3.1106 \(\int \frac{A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))^2} \, dx\)

Optimal. Leaf size=243 \[ -\frac{F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \left (a^2 (-C)-a b B+A b^2+2 b^2 C\right )}{b^2 d \left (a^2-b^2\right )}-\frac{E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \left (A b^2-a (b B-a C)\right )}{a b d \left (a^2-b^2\right )}-\frac{\left (-3 a^2 b^2 (A+C)+a^3 b B+a^4 C+a b^3 B+A b^4\right ) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a b^2 d (a-b) (a+b)^2}+\frac{\sin (c+d x) \sqrt{\cos (c+d x)} \left (A b^2-a (b B-a C)\right )}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))} \]

[Out]

-(((A*b^2 - a*(b*B - a*C))*EllipticE[(c + d*x)/2, 2])/(a*b*(a^2 - b^2)*d)) - ((A*b^2 - a*b*B - a^2*C + 2*b^2*C
)*EllipticF[(c + d*x)/2, 2])/(b^2*(a^2 - b^2)*d) - ((A*b^4 + a^3*b*B + a*b^3*B + a^4*C - 3*a^2*b^2*(A + C))*El
lipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a*(a - b)*b^2*(a + b)^2*d) + ((A*b^2 - a*(b*B - a*C))*Sqrt[Cos[c + d
*x]]*Sin[c + d*x])/(a*(a^2 - b^2)*d*(a + b*Cos[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.708097, antiderivative size = 243, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 43, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.14, Rules used = {3055, 3059, 2639, 3002, 2641, 2805} \[ -\frac{F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \left (a^2 (-C)-a b B+A b^2+2 b^2 C\right )}{b^2 d \left (a^2-b^2\right )}-\frac{E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \left (A b^2-a (b B-a C)\right )}{a b d \left (a^2-b^2\right )}-\frac{\left (-3 a^2 b^2 (A+C)+a^3 b B+a^4 C+a b^3 B+A b^4\right ) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a b^2 d (a-b) (a+b)^2}+\frac{\sin (c+d x) \sqrt{\cos (c+d x)} \left (A b^2-a (b B-a C)\right )}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])^2),x]

[Out]

-(((A*b^2 - a*(b*B - a*C))*EllipticE[(c + d*x)/2, 2])/(a*b*(a^2 - b^2)*d)) - ((A*b^2 - a*b*B - a^2*C + 2*b^2*C
)*EllipticF[(c + d*x)/2, 2])/(b^2*(a^2 - b^2)*d) - ((A*b^4 + a^3*b*B + a*b^3*B + a^4*C - 3*a^2*b^2*(A + C))*El
lipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a*(a - b)*b^2*(a + b)^2*d) + ((A*b^2 - a*(b*B - a*C))*Sqrt[Cos[c + d
*x]]*Sin[c + d*x])/(a*(a^2 - b^2)*d*(a + b*Cos[c + d*x]))

Rule 3055

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dis
t[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b
*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(b*
c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Lt
Q[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&
  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int \frac{A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))^2} \, dx &=\frac{\left (A b^2-a (b B-a C)\right ) \sqrt{\cos (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (a+b \cos (c+d x))}+\frac{\int \frac{\frac{1}{2} \left (-A b^2-a b B+a^2 (2 A+C)\right )-a (A b-a B+b C) \cos (c+d x)-\frac{1}{2} \left (A b^2-a (b B-a C)\right ) \cos ^2(c+d x)}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{a \left (a^2-b^2\right )}\\ &=\frac{\left (A b^2-a (b B-a C)\right ) \sqrt{\cos (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (a+b \cos (c+d x))}-\frac{\int \frac{\frac{1}{2} b \left (A b^2+a b B-a^2 (2 A+C)\right )+\frac{1}{2} a \left (A b^2-a b B-a^2 C+2 b^2 C\right ) \cos (c+d x)}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{a b \left (a^2-b^2\right )}+\frac{\left (-A b^2+a (b B-a C)\right ) \int \sqrt{\cos (c+d x)} \, dx}{2 a b \left (a^2-b^2\right )}\\ &=-\frac{\left (A b^2-a (b B-a C)\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a b \left (a^2-b^2\right ) d}+\frac{\left (A b^2-a (b B-a C)\right ) \sqrt{\cos (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (a+b \cos (c+d x))}-\frac{\left (A b^2-a b B-a^2 C+2 b^2 C\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{2 b^2 \left (a^2-b^2\right )}-\frac{\left (A b^4+a^3 b B+a b^3 B+a^4 C-3 a^2 b^2 (A+C)\right ) \int \frac{1}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{2 a b^2 \left (a^2-b^2\right )}\\ &=-\frac{\left (A b^2-a (b B-a C)\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a b \left (a^2-b^2\right ) d}-\frac{\left (A b^2-a b B-a^2 C+2 b^2 C\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b^2 \left (a^2-b^2\right ) d}-\frac{\left (A b^4+a^3 b B+a b^3 B+a^4 C-3 a^2 b^2 (A+C)\right ) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a (a-b) b^2 (a+b)^2 d}+\frac{\left (A b^2-a (b B-a C)\right ) \sqrt{\cos (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (a+b \cos (c+d x))}\\ \end{align*}

Mathematica [A]  time = 3.35444, size = 299, normalized size = 1.23 \[ \frac{\frac{4 \sin (c+d x) \sqrt{\cos (c+d x)} \left (a (a C-b B)+A b^2\right )}{\left (a^2-b^2\right ) (a+b \cos (c+d x))}+\frac{\frac{2 \left (a^2 (4 A+C)-a b B-3 A b^2\right ) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a+b}+\frac{2 \sin (c+d x) \left (a (a C-b B)+A b^2\right ) \left (\left (b^2-2 a^2\right ) \Pi \left (-\frac{b}{a};\left .-\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )-2 a (a+b) F\left (\left .\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )+2 a b E\left (\left .\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )\right )}{a b^2 \sqrt{\sin ^2(c+d x)}}-\frac{8 a (-a B+A b+b C) \left ((a+b) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )-a \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )\right )}{b (a+b)}}{(a-b) (a+b)}}{4 a d} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])^2),x]

[Out]

((4*(A*b^2 + a*(-(b*B) + a*C))*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/((a^2 - b^2)*(a + b*Cos[c + d*x])) + ((2*(-3*A
*b^2 - a*b*B + a^2*(4*A + C))*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b) - (8*a*(A*b - a*B + b*C)*((a
+ b)*EllipticF[(c + d*x)/2, 2] - a*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2]))/(b*(a + b)) + (2*(A*b^2 + a*(-(
b*B) + a*C))*(2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] - 2*a*(a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]
]], -1] + (-2*a^2 + b^2)*EllipticPi[-(b/a), -ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a*b^2*Sqrt[Sin[c
+ d*x]^2]))/((a - b)*(a + b)))/(4*a*d)

________________________________________________________________________________________

Maple [B]  time = 2.797, size = 815, normalized size = 3.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^2,x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*C/b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d
*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)
)-4/b*(B*b-2*C*a)/(-2*a*b+2*b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*
x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))+2/b^2*(A*b^2-B*a*b+C*
a^2)*(-1/a*b^2/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*
x+1/2*c)^2*b+a-b)-1/2/(a+b)/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1
/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-1/2/a*b/(a^2-b^2)*(sin(1/2*d*x+1/2*c
)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(co
s(1/2*d*x+1/2*c),2^(1/2))+1/2/a*b/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2
*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-3*a/(a^2-b^2)/(-2*a*b+
2*b^2)*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1
/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))+1/a/(a^2-b^2)/(-2*a*b+2*b^2)*b^3*(sin(1/2*d*x
+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Ellipt
icPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c)**(1/2)/(a+b*cos(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2} \sqrt{\cos \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)^2*sqrt(cos(d*x + c))), x)